Cat swarm optimization clustering (KSACSOC): A cat swarm optimization clustering algorithm

نویسندگان

  • Yongguo Liu
  • Xindong Wu
  • Yidong Shen
چکیده

Clustering is an unsupervised process that divides a given set of objects into groups so that objects within a cluster are highly similar with one another and dissimilar with the objects in other clusters. In this article, a new clustering method based on cat swarm optimization was proposed to find the proper clustering of data sets called K-means improvement and Simulated Annealing selection based cat swarm optimization clustering (KSACSOC). In the KSACSOC method, the seeking mode with k-means improvement was designed to enhance the clustering solution obtained in the process of iterations, and the tracing mode with simulated annealing selection was developed to explore the unvisited solution space. Experimental results on two artificial and six real life data sets are given to illustrate the superiority of the proposed algorithm over k-means algorithm, a simulated annealing clustering method, and a particle swarm optimization clustering method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

Solving Data Clustering Problems using Chaos Embedded Cat Swarm Optimization

In this paper, a new method is proposed for solving the data clustering problem using Cat Swarm Optimization (CSO) algorithm based on chaotic behavior. The problem of data clustering is an important section in the field of the data mining, which has always been noted by researchers and experts in data mining for its numerous applications in solving real-world problems. The CSO algorithm is one ...

متن کامل

Data Clustering with Cat Swarm Optimization

In this article, a recent metaheuristic method, cat swarm optimization, is introduced to find the proper clustering of data sets. Two clustering approaches based on cat swarm optimization called Cat Swarm Optimization Clustering (CSOC) and K-harmonic means Cat Swarm Optimization Clustering (KCSOC) are proposed. In the proposed methods, seeking mode and tracing mode are adopted to exploit and ex...

متن کامل

Cat swarm optimization for solving the open shop scheduling problem

This paper aims to prove the efficiency of an adapted computationally intelligence-based behavior of cats called the cat swarm optimization algorithm, that solves the open shop scheduling problem, classified as NP-hard which its importance appears in several industrial and manufacturing applications. The cat swarm optimization algorithm was applied to solve some benchmark instances from the lit...

متن کامل

An Improved Cat Swarm Optimization Algorithm Based on Opposition-Based Learning and Cauchy Operator for Clustering

Clustering is a NP-hard problem that is used to find the relationship between patterns in a given set of patterns. It is an unsupervised technique that is applied to obtain the optimal cluster centers, especially in partitioned based clustering algorithms. On the other hand, cat swarm optimization (CSO) is a new metaheuristic algorithm that has been applied to solve various optimization problem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012